MathExcel Worksheet D: Introduction to Infinite Series

- 1. Comprehension Check:
 - (a) What does it mean to say an infinite series converges?
 - (b) State the Test for Divergence. Can you ever use this to show that a series converges?
 - (c) What is a geometric series? When does that series converge? To what value does it converge?
 - (d) State the Integral Test.
- 2. For each of the following series, find the first four terms and the first four partial sums.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 (b) $\frac{4}{5} - \frac{6}{7} + \frac{8}{9} - \frac{10}{11} + \dots$

3. Use the divergence test to prove that each of the following series diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{10n+12}$$
 (c) $\sum_{n=1}^{\infty} \cos\left(\frac{1}{n}\right)$
(b) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$ (d) $\sum_{n=1}^{\infty} (\sqrt{4n^2+1}-n)$

4. Use the formula for the sum of a geometric series to find the sum or state that the series diverges.

(a)
$$\sum_{n=1}^{\infty} (e)^{-n}$$

(b) $\sum_{n=0}^{\infty} \frac{8+2^n}{5^n}$
(c) $\frac{7}{8} - \frac{49}{64} + \frac{343}{512} - \frac{2401}{4096} + \dots$
(d) $\frac{25}{9} + \frac{5}{3} + 1 + \frac{3}{5} + \frac{9}{25} + \frac{27}{125} + \dots$

5. Consider the following series: $\sum_{n=1}^{\infty} \frac{1}{n(n+4)}.$

(a) Use partial fraction decomposition to expand $\frac{1}{n(n+4)}$.

- (b) Write out a few partial sums and find a closed form expression for $S_N = \sum_{n=1}^N \frac{1}{n(n+4)}$.
- (c) Find $\sum_{n=1}^{\infty} \frac{1}{n(n+4)}$ by taking the limit of your expression in part (b).

- 6. Show that if a is a positive integer, then $\sum_{n=1}^{\infty} \frac{1}{n(n+a)} = \frac{1}{a} \left(1 + \frac{1}{2} + \dots + \frac{1}{a} \right).$
- 7. Use the Integral Test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 8. Let $b_n = \frac{\sqrt[n]{n!}}{n}$.

(a) Show that
$$\ln b_n = \frac{1}{n} \sum_{k=1}^n \ln \frac{k}{n}$$
.

- (b) Show that the sequence $\{\ln b_n\}_{n=1}^{\infty}$ converges to $\int_0^1 \ln(x) dx$ (which is equal to -1).
- (c) What is $\lim_{n \to \infty} b_n$?